
GNDStk Documentation
Release 1.0

Martin Staley

Oct 21, 2021

Contents

1 INTRODUCTION & PRIMER 2
1.1 Introduction . 2

1.1.1 Description . 2
1.1.2 Background . 2
1.1.3 Acknowledgements . 2

1.2 Building GNDStk . 2
1.2.1 Download . 2
1.2.2 Build & Test . 2
1.2.3 Summary . 2
1.2.4 Your Own Application . 2
1.2.5 Alternative: Bash Script . 2
1.2.6 Header-Only Library . 2

1.3 Tutorial . 2
1.3.1 Basics + Core Interface . 2
1.3.2 Read and Write GNDS . 2
1.3.3 Data Structure “Direct” . 2
1.3.4 Smart Query System . 2
1.3.5 GNDS Creation . 2
1.3.6 Advanced Examples . 2

2 BASIC CONSTRUCTS 2
2.1 Primary Classes . 2

2.1.1 Tree . 2
2.1.2 Node . 2
2.1.3 XML . 2
2.1.4 JSON . 2

2.2 Node: Major Capabilities . 2
2.2.1 Query . 2
2.2.2 Add Data . 2

2.3 Functions . 2
2.3.1 foo . 2
2.3.2 bar . 2
2.3.3 etc . 2

2.4 Reading & Writing . 2
2.5 Miscellaneous Utilities . 2

2.5.1 Global Flags . 2

i

2.5.2 Diagnostics . 2
2.5.3 Other . 2

3 CORE INTERFACE 2
3.1 Motivation . 2
3.2 Query System, Part 1 . 2

3.2.1 Meta & Child . 2
3.2.2 Operators . 2
3.2.3 Query Metadata . 2
3.2.4 Query Child Nodes . 2

3.3 Query System, Part 2 . 2
3.3.1 Sequence Queries . 2
3.3.2 Multi-Queries . 2
3.3.3 Conversion & Filters . 2

3.4 Creating Data . 2
3.4.1 Direct . 2
3.4.2 Using “Query” Objects . 2

3.5 Conversion Scheme . 2
3.6 Advanced Topics . 2

4 HIGH-LEVEL INTERFACE 2
4.1 Component Base . 2

4.1.1 Motivation . 2
4.1.2 Capabilities . 2
4.1.3 Usage Requirements . 2

4.2 Main Structures . 2
4.2.1 Examples . 2

4.3 Field Concepts . 2
4.3.1 Required . 2
4.3.2 Optional . 2
4.3.3 Defaulted . 2

4.4 C++ Version-Specific . 2
4.4.1 GNDS v1.9 . 2
4.4.2 GNDS v2.0 . 2

4.5 Python Bindings . 2

5 SEARCH 2

6 REFERENCE 2
6.1 Core Classes . 2

6.1.1 Tree . 2
6.1.2 Node . 2
6.1.3 XML . 2
6.1.4 JSON . 2
6.1.5 Meta . 2
6.1.6 Child . 2
6.1.7 KeywordTup . 2

6.2 I/O and Related . 2
6.3 Node: Major Capabilities . 2

6.3.1 meta() . 2
6.3.2 one() and many() . 2
6.3.3 child() . 2
6.3.4 operator() . 2
6.3.5 operator[] . 2
6.3.6 MetaRef & ChildRef . 2

ii

6.4 Meta & Child Operators . 2
6.5 convert() . 2

6.5.1 Tree/XML/JSON . 2
6.5.2 For Metadata . 2
6.5.3 For Child Nodes . 2

6.6 Canned Keywords . 2
6.6.1 For Metadata . 2
6.6.2 For Child Nodes . 2
6.6.3 Special cases . 2

6.7 High-Level Support . 2
6.8 High-Level Interface . 2

6.8.1 GNDS Version 1.9 . 2
6.8.2 GNDS Version 2.0 . 2

6.9 Miscellaneous . 2

7 INDEX 2

iii

iv

1

GNDStk Documentation, Release 1.0

CHAPTER 1

INTRODUCTION & PRIMER

1.1 Introduction

1.1.1 Description
Los Alamos National Laboratory’s GNDS Toolkit, or
GNDStk, has been designed first and foremost to pro-
vide a powerful, intuitive, and flexible C++ language
API for interacting with Generalized Nuclear Database
Structure data.
We begin by providing basic and cleanly-designed
classes in which GNDS data are stored. Next, we sup-
port a robust and flexible I/O system for reading from,
and writing to, both the XML and JSON file formats.
Support for more file formats is anticipated in the fu-
ture, as GNDS becomes more widely used.
While GNDStk is one library, from which you can use
any functionality you wish to at any time, we consider it
conceptually to consist of roughly three major parts: ba-
sic constructs and I/O; a “core” interface, and a higher-
level interface that will also be equipped with Python
bindings for users who wish to take advantage of them.
Let’s say a bit more about all of these elements.
BASICS
Here we have the basic requisite data structures and
functions, as well as flexible and easy-to-use GNDS file
I/O capabilities. Along with these also come, of course,
the numerous and sundry utilities needed for their im-
plementation. Some of the utilities, e.g. those for gener-
ating diagnostic messages such as warnings and errors,
may be of value in their own right to our users. We’ll
therefore provide some documentation of how selected
utility constructs work, without distracting us from our
focus on GNDStk’s major, most interesting capabilities.
CORE INTERFACE
The heart of GNDStk lies in its Core Interface. Consider
this interface to include the basics as described above,
while adding to them a powerful, flexible, and highly
user-programmable suite of data query and creation ca-
pabilities that can be used to great effect by themselves
if you wish – given some knowledge of the GNDS hier-
archy’s internal structure – and also for creating higher-
level interfaces like our own.
Our Core Interface allows for version-independent ac-
cess to all data in any GNDS file, including functionality
for reading, writing, and modification.
We support both a more-traditional C++ API design,
in which users can interact with classes and functions
in the usual fashion (largely through the Basics as de-
scribed above), as well as a powerful and easily exten-
sible “query system” for retrieving or creating GNDS
content. The query system is, in particular, quite inten-
tionally designed to enable you to integrate GNDStk’s
capabilities easily into virtually any other code in which
you might wish to use it – code that utilizes entirely your
own data structures, perhaps, or those of any other li-
brary or libraries with which you may be working.
HIGH-LEVEL INTERFACE
While still a work-in-progress at the time of this writ-
ing, GNDStk’s High-Level Interface will be comprised
of several elements.
First, we’ll provide one or more C++ base classes that
are designed to provide value to high-level derived
classes that one might wish to create, individually or
en masse, to represent GNDS data structures. Note
that, here, our use of the word derived refers to derived
classes in C++ – not, say, to nuclear data that were de-
rived in some sense from other nuclear data.
Notably, and with support from the Core Interface,
proper handling will be made available for capturing
the concepts of a required field, an optional field, and
an optional, with default field in a GNDS data struc-
ture. Here, and thinking in the language of XML, field
may mean something from an XML element’s attributes
(we’ll prefer the non-XML-specific term metadata in
GNDStk), or from its nested XML elements – child
nodes, in our preferred terminology.
An additional note regarding terminology: We may oc-
casionally write element to mean GNDS data as it would
appear in an XML element, if and when the term works
well in the narrative, but do so with the understanding
that GNDS data need not, of course, originate from an
XML source, or be intended for an XML destination.
We’ll also design GNDS version-specific collections of
high-level classes that represent important data struc-
tures for the GNDS version in question. Assuming that
the GNDS specifications don’t change a great deal be-
tween releases, we’ll expect to see substantial overlap,
across our version-specific collections, of these classes.
GNDStk will, naturally, handle such issues efficiently,
and will do so in a manner that’s entirely transparent to
users. We’ll focus on making our capabilities work well,
so that you can focus similarly on yours.
Finally, but no less significantly for many of GNDStk’s
intended beneficiaries, we’ll provide a suite of Python
bindings to much of our C++ functionality. That will in-
clude, certainly, the major classes in our version-specific
interfaces, and perhaps also – where reasonable and
possible, given differences between Python and C++ as
well as their respective limitations - to selected fabulous
and action-packed lower-level Core Interface constructs
as well.

1.1.2 Background
The Generalized Nuclear Database Structure, or GNDS,
started at Lawrence Livermore National Laboratory as
an effort to update their ENDL format. Realizing that
they could also modernize the ENDF format for nuclear
data, and make this modernization useful and avail-
able to everyone, they evolved GNDS to contain eval-
uated data, processed data, and application data. GNDS
has become an international standard as part of the
OECD/NEA.

1.1.3 Acknowledgements
The author wishes to thank several individuals for the
support and ideas that they provided throughout this
endeavor. An introduction to GNDS, to the broader
NJOY21 project, and to the need for quality software
for working with the GNDS format, was provided by
Nuclear Data team leader Jeremy Conlin. Materials and
Physical Data (XCP-5) group leader Patrick Talou tire-
lessly ensured financial support for the project, and pos-
itive encouragement for its personnel. Nathan Gibson
constructed the build system currently in use not only
for GNDStk but for many other elements of NJOY21.
Finally, Wim Haeck was a source of copious and invalu-
able comments, ideas, and discussions, without which
GNDStk wouldn’t be what it is today.
Martin Staley, Los Alamos National Laboratory,
February 2021

1.2 Building GNDStk

We designed GNDStk with the hope that it will prove
to be straightforward to download, to install, and to use.
GNDStk resides on Github, and uses CMake as its pri-
mary build system.
The following description is based on commands that
work for us, on a Linux system. Adapt our instructions
as necessary for your own platform.

1.2.1 Download
Enter the directory in which you’d like GNDStk to re-
side. This might be your root user directory, e.g. /
home/yourname/, or perhaps, say, in a dedicated di-
rectory that you use for your projects.
Download:
git clone https://github.com/njoy/GNDStk.
→˓git

Enter directory:

cd GNDStk

At this point you can, if you wish, check out a specific
branch of GNDStk. As is typical in git repositories,
our main branch is called master. So, if you wish:
Check out a branch:
git checkout master

With master that isn’t necessary, but you can replace
master with something else.

1.2.2 Build & Test
Some people prefer, as you may, to create a build di-
rectory in which to build the project. (Doing as much
certainly helps to keep a project’s base directory more
free of clutter.) Continuing from the GNDStk directory,
where we left off in the Downloading narrative above:
Make and enter a build directory:

mkdir build
cd build

Now run cmake itself, being sure to point it one level
up, to where the CMakeLists.txt file resides, if
you’re indeed down in build.
Run cmake:
cmake ..

The good news is that the above command should down-
load GNDStk’s dependencies – the modest number of
outside C++ libraries on which it depends – automati-
cally. The bad news is that the download may, for the
same reason, take quite some time. Resist the tempta-
tion to terminate the command, perhaps believing that
your computer has hung, and consider starting cmake
.. before lunch hour if you have a slow Internet con-
nection. The main culprit appears to be the “nlohmann
json” library, https://github.com/nlohmann/json. An ex-
cellent library, by all accounts, and invaluable as the
workhorse for GNDStk’s JSON capabilities; but respon-
sible, at the time of the writing, for over 400MB –
about 95% – of the entire dependencies directory that
the above command creates.
Finally, the Makefile that the above cmake com-
mand should have created, can be used to build GND-
Stk’s test suite.
Build GNDStk’s test suite:
make

Or, if you have for instance six processor cores avail-
able, then
Multicore build:
make -j 6

will no doubt run far faster.
GNDStk was carefully designed to not be one of those
infamous C++ libraries that triggers hours-long, even
many-minutes-long, compilations, leaving beleaguered
users wondering if they could more quickly find the data
they’re looking for by loading a file into an editor, find-
ing the data of interest, and cutting-and-pasting in their
own code. The above make in fact compiles several
codes, comprising our entire, substantial GNDStk test
suite with broad coverage across all of its considerable
capabilities. Even so, we hope and believe that you
won’t have the need to report to us that a multicore build
took more than a minute or two, at most, on a modern
and well-oiled home or office machine.
You can then invoke:
Run GNDStk’s tests:
make test

to run all of the tests. We hope that you will, at this
point, have the same pleasant experience that we do
when we invoke make test on our master GND-
Stk branch: a report that 100% tests passed.

1.2.3 Summary
Here’s a summary of the commands described above,
from downloading GNDS from our repository, through
building and running its full suite of tests:

Get GNDStk
git clone https://github.com/njoy/GNDStk.
→˓git
cd GNDStk
git checkout master

Cmake; may take some time
mkdir build
cd build
cmake ..

Make and run test suite
make
...or make -j 6
make test

1.2.4 Your Own Application
Let’s outline how you can interface your own applica-
tion code with GNDStk, using CMake.
First, you should have downloaded the GNDStk repos-
itory as described above. Building and running its test
suite isn’t a prerequisite for our present purposes, but
certainly wouldn’t hurt. Any problems you might en-
counter in that process would no doubt show themselves
again, in some form, here.
Now assume you have some directory, call it MyApp,
for your application, with the following file structure:

MyApp/
CMakeLists.txt
dependencies/

GNDStk/
src/

app.cpp

GNDStk/ is the cloned GNDStk repository. (If you
downloaded it elsewhere and don’t want a duplicate,
then perhaps make it a symlink here , a.k.a. a short-
cut, to the cloned repo.) Next, for our simple illustra-
tion here, let app.cpp be a single C++ source file that
contains all of your code to be used with GNDStk. The
remaining structure is typical for applications that use
CMake.
A working CMakeLists.txt for the above is as fol-
lows:

cmake_minimum_required(VERSION 3.14)
project(app LANGUAGES CXX)

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED YES)

add_subdirectory(dependencies/GNDStk)

add_executable(app src/app.cpp)
target_link_libraries(app PUBLIC GNDStk)

And, the simplest possible GNDStk-aware app.cpp
would be:

#include "GNDStk.hpp"

int main()
{
}

Finally, building app should be as simple as this:

cd MyApp # <== If you're not there
→˓already
mkdir build
cd build
cmake ..
make

If all went well, app.cpp should have been compiled
into an executable file called app.

1.2.5 Alternative: Bash Script
An important goal for us is that GNDStk be accessible,
with as minimally intrusive a build process as possible,
to a wide variety of researchers.
If you’re using libraries other than GNDStk, they may
impose their own build systems – possibly ones you
like, possibly ones you don’t, but ones you’re stuck
with, regardless, for better or for worse. You may, on
the other hand, be using your preferred and well-liked
build system. Independent of what you may or may not
be working with in that respect, we want GNDStk to
impose as little additional complexity as it can.
In the above spirit, and if you’re using a Linux or Linux-
based machine, you may find that the contents of the
following simple shell script can be adapted easily to
your needs:

#!/bin/bash

Specify your base GNDStk directory (as
→˓cloned from github) here.
GNDSTKDIR=/path/to/your/downloaded/GNDStk

Example compilation command. -
→˓std=c++17, and the -Is, are needed.
COMPILE="

g++
-std=c++17
-I$GNDSTKDIR/src
-I$GNDSTKDIR/build/_deps/pugixml-

→˓adapter-src/src/src
-I$GNDSTKDIR/build/_deps/json-src/

→˓include
-I$GNDSTKDIR/build/_deps/json-src/

→˓include/nlohmann
-I$GNDSTKDIR/build/_deps/log-src/src
-I$GNDSTKDIR/build/_deps/spdlog-src/

→˓include
-Wall -Wextra -Wpedantic"

pugixml.cpp is the only C++ source
→˓file, other than your own,
that needs to be compiled. We'll
→˓arrange to build it *once*.
if [! -f "pugixml.o"]; then
$COMPILE \

$GNDSTKDIR/build/_deps/pugixml-
→˓adapter-src/src/src/pugixml.cpp \
-c -o pugixml.o

fi

Compile your own C++ application,
→˓linking with the .o from above.
$COMPILE app.cpp pugixml.o -o app

Begin, as you can see, by specifying the base GNDStk
directory you cloned. The script immediately uses this
value to create a simple compilation command, in this
case one that uses g++ as its C++ compiler. Next, the
script checks to see if a certain .cpp file, from one of
GNDStk’s dependencies, has been compiled. If it hasn’t
been, yet, then it is now. Finally, another compilation
command builds your own application – illustrated in
this simple example as a single C++ source file called
app.cpp. Consider trying this first with the mini-
mal app.cpp that was shown in the section on CMake
builds.
You’re welcome to adapt our script, or its contents,
as may be necessary or helpful within your own build
regime.
Some caveats. Use of the sample bash script assumes
that you’ve downloaded GNDStk, and run cmake ..
(and in a build directory), as outlined earlier. You
can easily adjust the script if, for whatever reason, you
configured things in a different manner. Realize, how-
ever, that the cmake .. in some form, or steps that
created the same effect, must have happened in order
for GNDStk’s dependencies to have been downloaded
into the _deps directory that makes several appear-
ances throughout the script’s compilation command.
Be aware also that the script reflects dependencies, and
their locations in directories, that are correct at the time
of this writing. While we intend to update these instruc-
tions if and when we make relevant changes to GNDStk,
it’s possible that some detective work may prove to be
necessary if we drop the documentation ball after de-
pendencies do, for whatever reason, change. If, for in-
stance, we decide to explore someday one of those deep
mysteries of the universe that regularly visits our world
through computers, such as why pugixml.cpp ended
up in src/src/ rather than just in src/, then it’s pos-
sible, even as much as we try to behave, that we’ll make
a quick change to our own make system’s actions with-
out updating these instructions for a simple script in an
entirely timely manner.

1.2.6 Header-Only Library
GNDStk, proper, is a C++ header-only library. You
can find plenty of information online if you’re unfa-
miliar with the concept. In our opinion, header-only li-
braries provide a multitude of advantages, such as mak-
ing builds far less complex than they’d otherwise be;
and their disadvantages, generally distilling down to
some variation of “builds can take longer,” are straight-
forward to mitigate with careful design. We designed
GNDStk carefully.
Our library does, however, have one dependency,
pugixml (https://pugixml.org/), that has a single C++
source (not header) file. That’s why our sample shell
script, if you read that section, needed to compile one
.cpp file, other than your own, directly.
We mention our library’s header-only nature not so as
to conclude this chapter with any particular profound
point, but largely for informational purposes. If you’re
unfamiliar with the header-only concept, or with how to
write or to use such libraries in C++, then you might find
it helpful – or more importantly, fun – to learn more.
With respect to GNDStk, knowing that it’s formulated
in this fashion may allow you, in one way or another, to
make the best use of GNDStk in your own build system,
and in your own application.

1.3 Tutorial

1.3.1 Basics + Core Interface
Let’s begin with some very minimal GNDStk-based ex-
ample codes, explain our arrangement of major C++
namespaces, and then move on to more-interesting and
useful examples.

Minimal GNDStk-Aware Code

Here’s the most minimal GNDStk “application”, albeit
one that doesn’t do anything:

#include "GNDStk.hpp"

int main()
{
}

The takeaway: to use GNDStk, you should #include
its one primary header file, GNDStk.hpp. In contrast
to the manner in which some C++ libraries are designed,
GNDStk provides just this one main header file for user
consumption. That header, in turn, includes all of GND-
Stk’s other headers, and in the correct manner with re-
spect to namespaces and such.
Put another way, GNDStk is not designed, as some li-
braries are, so that you selectively choose what head-
ers to #include. When we use the C++ Standard
Library, for instance, we’ll pick and choose: include
iostream, most likely, and perhaps vector, and any
number of additional specific chosen headers.
The entire C++ Standard library is very large, of course,
and such selectivity is important so that compile times
are kept under control. GNDStk is much smaller, and
we’ve judged that compilation times aren’t significantly
impacted by putting forth our simple, easily followed
rule: just #include GNDStk.hpp – nothing more,
nothing less – in whichever of your own source files
need it.

Recommended Starting Point

For most users, most of the time, we suggest this
starting point:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main(/* argc,argv as necessary */)
{
}

This merely adds a specific using directive to the pre-
vious example. To understand what this directive does
for us, we need to understand GNDStk’s namespace hi-
erarchy.

Namespace Hierarchy

GNDStk, like many C++ libraries, places its various
constructs into a moderate number of C++ namespaces.
For simplicity’s sake, omitting details that most users
won’t care about, consider that GNDStk’s namespace
hierarchy looks something like this:

// Outer namespaces that surround
→˓everything else.
namespace njoy {
namespace GNDStk {

// Namespace for basic, generic "GNDS
→˓query objects". There are

// other sets of query objects; don't
→˓worry about those for now.

namespace basic {

// Query objects specific for GNDS
→˓metadata.

namespace meta {
}

// Query objects specific for GNDS
→˓child nodes.

namespace child {
}

// Bring in meta:: and child::
→˓above.

using namespace meta;
using namespace child;

// Bring in common:: below.
using namespace common;

}

// Some query objects that we wish to
→˓be shared across basic::

// as well as other query-object
→˓namespaces that we don't list here.

namespace common {
}

// Logging capabilities, including,
→˓for example, support for errors,

// warnings, and informational
→˓messages.

namespace log {
}

// Our "core" namespace; see
→˓discussion.

namespace core {
// Bring in GNDStk:: itself, and

→˓basic:: above
using namespace GNDStk;
using namespace basic;

}

}
}

A few things are happening here, so bear with us.
For starters, everything is in njoy::GNDStk::.
That’s easy enough to understand. Notably, however:
considering that a typical C++ library will often begin,
at global scope, with a namespace that matches the li-
brary’s name, it’s laughably easy to forget the njoy::
part. We’ve made that mistake several times, ourselves.
We have the njoy:: only because GNDStk is just one
element of Los Alamos National Laboratory’s broader
NJOY suite of software projects. If – well, when – you
ever forget the njoy::, a modern C++ compiler may
suggest, in its initial error message (before its flood of
spurious ones), that you probably meant the GNDStk::
in njoy::.
Fundamentally important in GNDStk are its “query ob-
jects”. Think of these as small modules of information
that facilitate a concise notation for getting (or setting)
GNDS data. (Much more on all of this later.) For now,
suffice it to say that the query objects of most inter-
est to users are our basic ones in – drum roll, please
– basic::. Within basic::, query objects are fur-
ther placed into meta:: or child::, depending on
whether they’re designed for getting and setting meta-
data, or for getting and setting child nodes. Names for
our query objects equate, except in certain rare cases,
to the GNDS names of the metadata and child nodes
with which they interact. For example, a GNDS label
metadatum is called label in GNDStk’s query objects,
and a GNDS styles node is called styles.
Strangely – at first glance – basic:: has using
directives for its own meta:: and child:: sub-
namespaces! Why not place the contents of those di-
rectly into basic:: to begin with, and dispense with
the sub-namespaces altogether? It turns out, in fact, that
the GNDS standard has a small amount of overlap be-
tween its names for metadata, and its names for nodes.
Two examples are parity and spin. If, for example,
you look through the currently available XML-format
GNDS files, you’ll see XML spin="something"
metadata, and also XML <spin> elements. Our ar-
rangement for basic::, meta:: and child:: is
such that if you’re using namespace basic, you
can dispense with a meta:: or child:: prefix where
names are unique (styles, label, and most other
names), or prefix appropriately in the occasional cases
where they aren’t: meta::spin for spin metadata,
child::spin for spin nodes, and so forth.
basic:: is one of two namespaces (at the time of this
writing) into which we’ve placed full sets of query ob-
jects for GNDS metadata and child nodes. (Don’t worry,
for now, about the other set. We may even remove
it, as other capabilities of GNDStk have made it less
worthwhile to have than it once was.) A third names-
pace, common::, contains a small handful (not a com-
plete set) of query objects that are intended for use with
both of the two full sets. In addition to using its own
meta:: and child:: sub-namespaces for the rea-
sons we described above, basic:: also brings in the
contents of common::, so that no common:: prefix is
needed when you’re using namespace basic.
A namespace log:: also exists in GNDStk. We’ll dis-
cuss it elsewhere, but mention it here only because (1)
you may occasionally find its contents to be useful for
your own purposes; and (2) it serves, in contrast to the
other namespaces being discussed here, as an example
of something that isn’t included automatically by our
core:: namespace. We don’t consider it to be use-
ful enough, for the average user, to justify cluttering
core:: with its contents. If and when you need it,
log:: is short, and easy to type.

Core Interface

That brings us, finally, to the core:: namespace that
we called out, in our example code, as being precisely
what we suggest that most users bring in:

using namespace njoy::GNDStk::core;

core:: is little more than this:
namespace core {

using namespace GNDStk;
using namespace basic;

}

So, core:: brings in basic::, which as we saw
above brings in its own meta:: and child::
sub-namespaces, as well as the (modest but use-
ful) content in common::. On top of that,
core:: actually brings in GNDStk:: (that is,
njoy::GNDStk::), even though core:: itself in
inside of njoy::GNDStk::! (The language does al-
low that.)
All things considered, then, the single directive using
namespace njoy::GNDStk::core brings in all
content from:
njoy::GNDStk::
njoy::GNDStk::basic::
njoy::GNDStk::basic::meta::
njoy::GNDStk::basic::child::
njoy::GNDStk::common::

with the single caveat we spoke of already in regards to
basic:: – that in the rare but occasional cases of over-
lap (meta::spin vs. child::spin, for instance,
or meta::parity vs. child::parity), you must
disambiguate. And the compiler will tell you as much,
as it’ll be an error until you do.
The combined content of the above-listed namespaces
constitute what we consider to be a good set of core
GNDStk capabilities. Hence, our motivation for creat-
ing a core:: namespace that brings all of them into
your code, together, via the one convenient directive that
we’ve recommended.
You can consider the phrases core namespace and core
interface to be essentially interchangeable. Which term
we use, and where, depends on whether we’re referring
to the namespace in particular, or to the functionality it
exposes.
We’ll note, finally, that having (and recommending) our
core:: namespace is helpful from the standpoint of
software maintainability. If we decide at some future
time that GNDStk needs a refactor, and/or a rearrange-
ment of its functionality into a different overarching
namespace scheme, we anticipate being able to update
the contents of core:: in such a way that the codes
that use it – like, we hope, yours – will need few if any
changes, even if the GNDStk constructs that the codes
employ have been moved to entirely new or different
locations.

1.3.2 Read and Write GNDS

Read XML

Here’s a simple code that reads the XML format GNDS
file named n-094_Pu_239.xml:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239("n-094_Pu_239.xml");
}

Obviously, but worth a reminder, this assumes that the
file resides right there, in the directory from which this
code is run. If it doesn’t, include a suitable absolute or
relative path in the file name string. We, and no doubt
everyone reading this, have probably made this mistake
often enough over the years.
Tree is GNDStk’s data structure for holding an entire
GNDS hierarchy, a.k.a. GNDS tree. GNDS is, indeed,
a tree-like structure, and that’s reflected in the name
of our C++ class. Once loaded, you’ll be able to do
great things – most likely, in this particular example,
data queries from an existing GNDS file – with object,
pu239 here, into which the GNDS data in the loaded
file were placed.
A large collection of XML-format GNDS files can be
downloaded from here:

https://www.nndc.bnl.gov/endf/b8.0/
gndsfiles.html

That’s where we got our example’s n-094_Pu_239.
xml, and many other GNDS files. At around 24MB in
size, it’s one of the larger GNDS files from the above
site, but it isn’t among the absolute largest. We’ll often
use it in our examples; its modest size (by today’s stan-
dards) should still allow for fast reading, and we believe
that its contents make for good examples. The same,
of course, could probably be said about any GNDS file,
depending on what data are of interest.
While we didn’t say so directly, a C++ programmer will
have realized what the above code tells us: that Tree
has a constructor from a character string (in fact, from a
std::string), and for which the behavior is: “inter-
pret the string as the name of a GNDS file, and load the
file.” You could write this instead:
#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239;
pu239.read("n-094_Pu_239.xml");

}

which is more explicit in its purpose, but slightly less
concise. (And the earlier, direct-constructed Tree
could be const, if that matters.)

Files, Streams, Types

In terms of what we saw above, Tree has four simi-
lar constructors. (And has several additional completely
different constructors that are outside the scope of the
present discussion).
The first argument is either a file name, or a C++
std::istream from which to read the “file.” The
second argument allows you to stipulate the file format
explicitly, and can either be something from GNDStk’s
FileType enumerator:

enum class FileType {
null, // Default, automagick, etc.
tree, // <== DON't use this for

→˓reading; just writing
// Generally use one of these:
xml, XML = xml,
json, JSON = json,
hdf5, HDF5 = hdf5

};

or can be a direct string: "xml", etc. A direct string
is shorter and slightly easier to type – but, if mistyped,
would lead to a run-time error, not a compile-time error,
if that matters to you in this simple context.
HDF5 is not supported at this time! Just XML and
JSON.
You should seldom, if ever, need to provide the second
argument. Absent the second argument, GNDStk de-
termines the file type automatically, and we doubt that
you’ll have any objections to that. If you do choose pro-
vide the second argument, then it, not GNDStk’s auto-
matic file type determination, will be used, but you’ll
see a warning if your directly-given value contradicts
GNDStk’s automatic determination, which it still per-
forms for diagnostic purposes. Of course, if you try to
force reading in one format, and the file’s actual format
is something else, you’ll soon be seeing a flood of er-
rors, not mere warnings, as we attempt to read the file
pursuant to the (incorrect) forced format.
GNDStk uses the “file magic number,” not the file name,
to determine file type automatically. The file magic
number really means the first byte, or bytes, of the file.
XML files always begin with a < character. HDF files
(not supported yet) begin with ASCII 137 and a few
other specific bytes. If the first byte is neither of those
values, then GNDStk assumes JSON format.
A nice thing about using the file magic number, not the
file name, is that it works for std::istream, for
which a “file name” isn’t even available. Moreover, it
tells us what’s actually in the file or the stream, inde-
pendent of what any name might imply. If you provide
an XML file but call it something.JSON, then that
would be a rather strange thing to do, but GNDStk will
correctly determine the actual type – XML – and thus
read the file correctly. In cases like that, GNDStk will
do an additional good deed: it’ll warn you that the file’s
name contradicts the file’s type as implied by the file
magic number.

Read & Write XML

Here’s a simple example in which we read our trusty ex-
ample GNDS XML file, then write it back out to another
XML file:
#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239;
pu239.read("n-094_Pu_239.xml");
indent = 2; // <== not necessary;

→˓just for illustration
pu239.write("pu239");

}

You probably already guessed, correctly, that if Tree
has a read that reads, then it probably has a write
that writes. We’ve endeavored to make GNDStk’s de-
sign as intuitive and consistent as reasonably possible.
We wrote earlier that GNDStk uses the file magic num-
ber, not the file name, to determine the file type when
reading. When writing, there is no file magic number –
the file to be written doesn’t exist, yet, or if it does, then
its present contents are meaningless because the file is
about to be replaced.
When you call write, therefore, GNDStk does use the
file name to determine what format in which to write,
except that you can provide that second argument again
– a value from our FileType enumerator, or a string
like "xml" or "json" – to specify the type you want
directly. As it does for read, GNDStk makes some
consistency checks. If you write, for instance,

pu239.write("pu239.xml", "json");

then GNDStk will write file pu239.xml in JSON for-
mat, as you asked for in the second argument, but will
warn that the file extension is inconsistent with the for-
mat you asked for.
What if the file name extension isn’t given, or isn’t
recognized, and a format isn’t forced with a second
argument? That is, what if we wrote, for example,
pu239.write("pu239")? In that case, write
writes the Tree into a simple output format that we
created largely for debugging purposes. You probably
won’t have much use for this format, and we don’t pro-
vide the ability to read from it, but you’ll no doubt no-
tice the problem quickly and be able to fix it.
In the above code, what’s indent all about? We didn’t
really need to clutter the example by including it, as it
isn’t required at all, but we wanted to illustrate some-
thing minor but perhaps of interest. indent is one of
a small handful of useful “global variables” (not truly
global, but in namespace njoy::GNDStk::) that
GNDStk provides to you for fun and profit. Fun, at
least. For XML and JSON output files, as well as for
a few other things throughout GNDStk’s vast array of
features, indent tells how many spaces you’d like in-
dentation to be. GNDStk’s default is 3 spaces, which
this author happens to prefer. In the example, we’re
saying (before the write, of course) that we’d like 2
spaces to be used. At present, behavior is undefined if
you give a negative number, and of course the output
will look ridiculous if you give a huge number. Most
people prefer 2-5 spaces for indentation. In case you’re
wondering, GNDStk has no facility for using tabs – an
evil creation, quite arguably – for this purpose.
Finally, we note that write can write to a
std::ostream, not just a file, in much the same
way that read can read from a std::istream, not
just a file. (Always remember: ostream for writes,
istream for reads.) Bear in mind, again, that with
output a file magic number isn’t available, and if you
use std::ostream, then a file name, from which we
might guess the format, isn’t available either. So, you’ll
specifically want to give the second argument – "xml",
say, or "json" – if you write to a std::ostream.

More Reads & Writes

We hope that GNDStk’s basic facilities for reading and
writing GNDS files are clear enough at this point, but
we’ll provide a few more examples nonetheless. A sim-
ple XML to JSON conversion can be done like this:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239;
pu239.read("n-094_Pu_239.xml");
pu239.write("n-094_Pu_239.json");

}

Here’s a more compact version of the same thing:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree("n-094_Pu_239.xml").write("n-094_
→˓Pu_239.json");
}

Just as we can write JSON, we can read it, too. If we’ve
produced the output .json file as with the above ex-
ample, we can read it thus:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree pu239("n-094_Pu_239.json");
}

Here, as you can see , we’ve returned to using a “read by
constructor,” as in our original XML example, instead
of employing a read call. It’s just more concise, in our
opinion. Of course, you’ll use – and should – whichever
variation you prefer.

Read, Write, Compare

We’ll wrap up our set of read/write examples with a
code that reads our favorite GNDS XML file, writes it
to a JSON file, independently reads the JSON back into
another Tree object, and then also compares the new
Tree to the original:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

// Read from XML
Tree FromXML;
FromXML.read("n-094_Pu_239.xml");

// Write to JSON
FromXML.write("test.json");

// Read back from JSON
Tree FromJSON;
FromJSON.read("test.json");

// Compare
assert(FromXML == FromJSON);

}

Several remarks are in order here.
The comparison operator for Tree compares the two
GNDS trees in an order-agnostic manner. GNDS fun-
damentally provides data in two places: nodes (think
XML “elements”) in its overall tree structure, and meta-
data (think XML “attributes”). The GNDS standard
does not, however, consider ordering to be important.
One tree node’s child nodes or metadata, anywhere or
everywhere throughout the entire tree structure, could
be reordered arbitrarily, but if each remains equivalent –
in the same respect that we consider two mathematical
sets to be equivalent – then the two GNDS trees are to
be considered equivalent. So it is with our Tree com-
parison.
Interestingly enough, the above example’s FromXML
and FromJSON objects will, in fact, have quite differ-
ent orderings, across the board, of child nodes and meta-
data! Why is this the case? GNDStk makes use of an
external library called pugixml for reading and writing
XML files, and an external library nlohmann/json, on
Github, for reading and writing JSON files:

https://pugixml.org/
https://github.com/nlohmann/json

It turns out that pugixml preserves the existing order-
ing of XML elements and attributes when it reads a file,
while nlohmann/json lexicographically sorts the JSON
name/value pairs by name. The latter library’s behavior
could be considered unfortunate if we’d rather see order-
ing preserved; while the former library’s behavior could
be considered unfortunate if we wish to fully respect
GNDS’ “no-ordering” rule and discourage the creation
of code that might inadvertently depend on data order-
ing. In any event, our operator== for Tree respects
order-independent equivalence, as it should.
What’s assert about? If you’re not familiar with
assert, it’s actually a longstanding and quite use-
ful macro that C++ inherited from the C language.
assert simply checks that its argument is true, and
causes the code to exit immediately, with an error mes-
sage that says something along the lines of “assertion
failure . . . ”, if it isn’t true.
This documentation uses assert throughout its ex-
amples. It’s great for that purpose: an expression like
assert(foo) can be read, simply and concisely, as:
“we’re asserting to you, the reader, that foo is true
here.” In the above code, for instance, we’re telling
you directly that FromXML and FromJSON equal each
other when we’re at the assert line.
GNDStk’s test suite, by the way, makes use of the
CATCH library, described online as a “test framework
for unit-tests.” CATCH, on the one hand, has far more
macros and other testing machinery than we get with
just assert by itself. However, a philosophy we’re
keeping in mind with GNDStk is that we don’t want
to require potential users to learn more than they need
to. A system like CATCH, while more powerful, can
obscure, to the uninitiated user, where even a basic con-
struct like a main() is located, or how different source
files are fitted together to create a group of tests.
Therefore, for your benefit throughout this manual,
we’ll keep things simple. We’ll provide complete,
working, compile-able codes except where it’s obvious
that something is just a code fragment; and employ the
simple but clear assert where we wish to draw atten-
tion to the fact that the asserted expression is true.

Regarding JSON Files

The specifications for Version 1.9 of the GNDS standard
can be found here:

https://www.oecd-nea.org/jcms/pl_39689/
specifications-for-the-generalised-nuclear-database-structure-gnds

which, at the time of this writing, is the latest available
standard. Section 2.4 of the downloadable PDF doc-
ument discusses limitations of some “meta-languages”
(roughly speaking, file formats) such as JSON, in com-
parison with what XML is able to represent.
Here are three points quoted directly from the docu-
ment:

1. for meta-languages that do not
support attributes, either group all at-
tributes together under a child node called
attributes or convert each attribute to
a child node and add a suffix like _attr to
the node name.
2. for meta-languages that do not sup-
port multiple child nodes with the same
name, add a unique suffix to each node
name. For example, if multiple reaction
elements appear in the file, they become
reaction0, reaction1, etc. To avoid
parsing strings to determine the original
node name, a nodeName attribute (or
child node) should also be added indicating
the original unmodified node name.
3. for meta-languages that do not preserve
the order of child elements, an attribute or
child node with the (0-based) index should
be added to the node. For example, in
HDF5 the attribute nodeIndex could be
added to each child in a group.

For (1), GNDStk does the first suggested action: it
groups all of a node’s attributes under a child node
called attributes. We consider that to be cleaner
than using an _attr suffix.
For (2), GNDStk does exactly as illustrated: multi-
ple elements of the same name are suffixed with 0, 1,
etc. And, then, a JSON name/value pair with the name
nodeName, as suggested, is created in order to preserve
the original unsuffixed element’s name.
For (3), GNDStk does nothing in particular right now.
Our understanding of GNDS is that it’s designed so
that elements – nodes – can appear in any order.
Here’s a small XML fragment taken directly from the
n-094_Pu_239.xml example GNDS file that we’ve
been using for our examples:

<axes>
<axis index="1" label="energy_in"

→˓unit="eV"/>
<axis index="0" label="radius" unit=

→˓"fm"/>
</axes>

Those axis child nodes already contain a 0-based
index attribute, so perhaps the specification’s admon-
ishment #3 is something we can consider to have been
satisfied already by whomever has created an existing,
valid GNDS file (so that no further treatment is re-
quired); or something that we must satisfy if we are to
create our own valid GNDS files.
The GNDS document then puts forth the following ex-
ample XML fragment – slightly reformatted here for
clarity, and with a proper XML declaration node (the
first line) added for completeness:

<?xml version="1.0" encoding="UTF-8"?>
<employees>

<employee>
<name first="Doc" last="Jones"/>

</employee>
<employee>

<name first="Grumpy" last="Smith"/>
</employee>
<employee>
<name first="Happy" last="Earp"/>

</employee>
</employees>

A viable JSON equivalent is then suggested.
Calling the above XML file employees.xml, let’s
bring forth our tried-and-true GNDStk methodology for
converting from XML to JSON:

#include "GNDStk.hpp"
using namespace njoy::GNDStk::core;

int main()
{

Tree("employees.xml").write(
→˓"employees.json");
}

and see what happens. Here’s exactly the output JSON
file that the above code, applied to the sample XML,
creates:
{

"employees": {
"employee0": {

"name": {
"attributes": {

"first": "Doc",
"last": "Jones"

}
},
"nodeName": "employee"

},
"employee1": {

"name": {
"attributes": {

"first": "Grumpy",
"last": "Smith"

}
},
"nodeName": "employee"

},
"employee2": {

"name": {
"attributes": {

"first": "Happy",
"last": "Earp"

}
},
"nodeName": "employee"

}
}

}

This illustrates how GNDStk creates JSON files, con-
sistent with the suggestions in the GNDS specification.
If you try the above code, on the given input, you’ll see
that GNDStk prints two warnings. The same warning
twice, actually: once during input, and once during
output. The warning tells us that <employees>
– the top-level node of the above XML document –
is not recognized as a valid GNDS top-level node.
(Valid GNDS top-level nodes, per the standard,
are reactionSuite, covarianceSuite,
PoPs, thermalScattering, and
fissionFragmentData.) It’s just a warning,
not an error, so don’t worry about it for now.
Naturally, GNDStk reverses the modifications when we
read from a JSON file into our internal format. Specif-
ically: values in an attributes block are trans-
formed into metadata in the enclosing node, and val-
ues from nodeName name/value pairs replace index-
suffixed names.
At this time, GNDStk provides no other options, such
as the _attr suffix that the GNDS specification sug-
gested as a possibility, for handling JSON. Neither can
it read JSONs that may have been created in a different
manner. We’re not aware, at the time of this writing,
of the existence any official JSON-format GNDS files.
If and when such files come into existence, and if such
files use a different scheme than we do for addressing
the issues described above, then we’ll provide capabili-
ties at least for reading those files, and perhaps for writ-
ing them in that manner as well.

1.3.3 Data Structure “Direct”
In this section, we’ll talk about some of the basic inter-
nal constructs of some of GNDStk’s classes: more im-
portantly, Tree and Node; less importantly, XML and
JSON. We’ll describe member data – with an impor-
tant message to users first – and also some of the mem-
ber functions that you’re likely to find useful. For now,
here, we won’t cover the plethora of member functions
that support our “smart query system.” Those need their
own dedicated, and detailed, discussion.

About Direct Access

Right away, we strongly suggest that most users
avoid direct access of member data in these classes!
An exception is the name string in Tree and Node,
which you might well wish to access. It’s rather in-
oculous. Other member data, at this time, consists of
containers for metadata and child nodes.
In most cases, we hope you’ll prefer to use GNDStk’s
rich variety of powerful higher-level capabilities, in our
“smart query system,” for pulling data from, or push-
ing data to, the metadata and child-node containers.
(We’re talking right now about capabilities that are still
in our core interface – not in our “high-level” interface
that provides classes tailored to specific versions of the
GNDS standard.) The basics of our “smart query sys-
tem” are described in an upcoming section of this docu-
ment.
Our query system was designed precisely so that you’ll
have something much more concise and powerful than
you will by directly accessing the containers in ques-
tion. And, most likely, also safer to use, insofar as
working directly with the internals of data structures,
especially those that were designed by other people, in-
variably runs some risks. C++ containers aren’t rocket
science (and, besides, some GNDStk users may well
be rocket scientists), so we do in fact provide public
access to these structures, in the interest of supporting
users who are comfortable and capable with the C++
language.
Finally, we believe that if you understand the basic in-
ternal data format, then you may find the behavior of the
higher-level capabilities, and our motivation for creating
them, to be more clear.

Tree vs. Node

We’ve already seen Tree in some examples. It’s the
class to use when you want to read or write an entire
GNDS tree. Tree is derived from another important
class: Node. At the time of this writing, Tree contains
no additional data beyond what it gets from Node. It
does, however, contain some additional member func-
tions, and it makes some slight changes to some of the
member functions that otherwise gets from its Node
base.
Here’s a short sketch of our arrangement:

class Node
{

using metaPair = std::pair
→˓<std::string,std::string>;

using childPtr = std::unique_ptr<Node>
→˓;
public:

std::string name;
std::vector<metaPair> metadata;
std::vector<childPtr> children;
// constructors, member functions, ...

};

class Tree : public Node
{

// a few additional and/or different
→˓member functions
};

The GNDS standard is essentially a tree structure, and
this is reflected in our classes, with Tree being in-
tended for the top-level (root) node, and Node for all
others.
Some readers may realize, correctly, that a typical tree
structure’s top-level node could be treated in exactly the
same way as all of its other nodes. One doesn’t gen-
erally need different data types for a tree’s root node
and its other nodes, including leaves. Roughly speak-
ing, tree nodes all “look the same,” with similar contents
as well as relationships to their child nodes.
That’s all true, and it could be described as the theoreti-
cal/mathematical view of tree structures. From a practi-
cal/engineering standpoint, some utility can sometimes
be had in treating a top-level node differently from the
others. That’s the reasoning for Tree versus Node.
As a derived class, Tree automatically inherits most
of its functionality from Node, as we want it to. In a
handful of respects, however, Tree will reflect the fact
that it’s there to represent an entire GNDS hierarchy, not
just a portion thereof. For example, it tries to ensure that
the top-level GNDS node isn’t any valid GNDS node,
but one of the few that’s valid as a top-level GNDS node.
(GNDStk, it turns out, emits a warning, but not an error,
if you try to write a Tree that doesn’t have a top-level
GNDS node with a valid name.)
One could also imagine extra functionality that a Tree,
but not a Node, could be equipped with. In the typi-
cal case that a GNDS tree is read from a file, for ex-
ample, we could have the Tree structure store the file
name. Then, perhaps, we could equip Tree with a
member function like overwrite() or rewrite()
that would replace the original file (say, after a user has
made changes that they wished to make to the GNDS
data) without requiring that the file name be repeated.
(Analogy: a image-editing GUI that provides, in its File
menu, an item like Overwrite <original.jpg>,
in addition to a Save As... and an Export.) GND-
Stk does not, at the time of this writing, provide this
particular capability. By making Tree different from
Node, however, we allow for the possibility of such
things being added, painlessly, at a later time.

Content Preservation

An important initial design decision that we made for
our Tree and Node classes is that they faithfully rep-
resent precisely the content from any GNDS file we may
read into them. The fundamental motivation here is sim-
ple: data evaluators work hard to create good data, and
we don’t want to take any actions that might, in any way,
change or lose anything.
Consider, as a simple example, this small fragment
of content from near the beginning of our favorite
n-094_Pu_239.xml example GNDS file:

<mass>
<double label="eval" value="1.

→˓00866491574" unit="amu"/>
</mass>

We could probably all agree that the label "eval" and
unit "amu" should be stored as strings. But what about
the value "1.00866491574"? We could store it as a
double, if we’re presumptuous enough to assume that
a user intends to use it as a double – not a float,
say, or a long double. We’d also be assuming, there,
that a user doesn’t mind the expensive of presumptively
“floating-point” content from GNDS files being con-
verted en masse from the original XML character strings
to floating-points, regardless of which GNDS content
the user might actually access. On top of that, we’d
be glossing over the various complexities that can (and
do) arise when decimal representations of floating-point
numbers are converted to internal binary floating-points,
and back again. (The “back again” part is especially rel-
evant if someone plans, say, to read a GNDS file, add
new data and/or fix old data in selected areas, and then
write the entire GNDS file back out again.)
Instead of making wild assumptions, we’ll opt instead
to preserve original content – that is, to respect precisely
what exists in a GNDS file to begin with.
To this end, all individual data, regardless of what they
may appear to be (string, floating-point, integer, single
character, etc.), are stored as strings. More precisely,
as C++ std::strings. Node names ("mass") are
stored as strings. Metadata key/value pairs are stored
as C++ std::pairs of strings; think {"label",
"eval"}. Even the content in GNDS values nodes,
like this one (the first in n-094_Pu_239.xml):

<values>
2500 8.9172 2550 8.9155 2650 8.9139 ...
... 28500 8.4901 29500 8.4741 3e4 8.

→˓4659
</values>

are stored, in a Node, as long strings. (We
could reasonably split out such thing into
std::vector<std::string>s, too, but de-
cided to not even do that. To perform such a split
everywhere, automatically, would take time, and a user
might not even intend to access any specific portion of
GNDS data.)
No worries, though: our core interface, and especially
the smart query system that we’ve spoken of, has plenty
of functionality for serving its internal strings to you
as floating-points, for instance; or for re-forming long
strings, like the ones just described, into vectors of
strings, or vectors of floating-points, or vectors of just
about anything you may wish to create. When we speak
of content preservation, then, we’re saying that an in-
put text file – XML or JSON, for now – is factored
into its underlying tree structure, but with its individ-
ual meaningful parts (neglecting, as usual, whitespace)
still stored as text, with no modifications.
A given user’s application code will almost certainly
have its own internal classes that contain GNDS data,
or data computed from GNDS data, in ways that work
well for the user’s application. Someone may also have
classes specifically intended to mirror the content in
various GNDS nodes, just in a different way. (GND-
Stk’s own “high-level interface” will provide precisely
such classes.) Such classes can certainly make assump-
tions we didn’t want GNDStk to make – like, for ex-
ample, that we do want double for that numerical
value above. Or, for that matter, that perhaps the unit,
"amu" above should be an entry in some C++ enumer-
ator for allowable units – no longer a string at all. We’re
happy to report that our core interface, and in particular
our smart query system, is designed to help you interact
well, and easily, with GNDStk’s internal string storage.
We’ll write more about the above considerations else-
where. For now, let’s return to the main point of this
chapter, and describe GNDStk’s two major classes that
store GNDS data.

Node

We’ll write first about Node (for general nodes), be-
cause Tree (for the root node only) derives from Node.
Recall that the member data in Node looks like this:
class Node
{

using metaPair = std::pair
→˓<std::string,std::string>;

using childPtr = std::unique_ptr<Node>
→˓;
public:

std::string name;
std::vector<metaPair> metadata;
std::vector<childPtr> children;
// constructors, member functions, ...

};

In short, inlining the metaPair and childPtr types
and omitting the std:: prefix for brevity:

// Node's data members
string name;
vector< pair<string,string> > metadata;
vector< unique_ptr<Node> > children;

The above evinces a simple tree structure that’s entirely
sufficient for representing the contents of any GNDS
node.
Let’s provide a short but concrete example. Here’s
some XML content from near the top of the
n-094_Pu_239.xml GNDS file:

<evaluated label="eval" date="2017-12-01
→˓" library="ENDF/B" version="8.0.5">
<temperature value="0.0" unit="K"/>
<projectileEnergyDomain min="1e-05"

→˓max="20000000.0" unit="eV"/>
</evaluated>

Here, an outer evaluated node (XML “element”)
contains four metadata key/value pairs (XML “at-
tributes”) and two child elements. The first child el-
ement, temperature, contains two metadata pairs
but no further child nodes. The second child element,
projectileEnergyDomain, contains three meta-
data pairs but no further child nodes.
At the risk of continuing a narrative of statements that
are no doubt obvious, here’s precisely how the above
evaluated node is represented in a Node:

name: "evaluated"

metadata[0]: {"label", "eval"}
metadata[1]: {"date", "2017-12-01"}
metadata[2]: {"library", "ENDF/B"}
metadata[3]: {"version", "8.0.5"}

children[0]: pointer to another Node,
→˓with:

name: "temperature"

metadata[0]: {"value", "0.0"}
metadata[1]: {"unit", "K"}

children[1]: pointer to another Node,
→˓with:

name: "projectileEnergyDomain"

metadata[0]: {"min", "1e-05"}
metadata[1]: {"max", "20000000.0"}
metadata[2]: {"unit", "eV"}

Here, {"foo", "bar"} is a C++
std::pair<std::string,std::string>,
and is thus accessible in the customary manner:
.first for the "foo" and .second for the "bar".
We use C++ std::unique_ptr<Node>s for the
pointers to child nodes.

Pointers about Pointers

A couple of early users asked us about the motivation
for using pointers, so we’ll briefly address, here, the
concerns that they raised, in case other users wonder the
same things.
One person wondered why children is a vector of
pointers – not a vector of Nodes, which would appear
at least to be simpler. Of course, a Node can’t di-
rectly contain another Node – C++ wouldn’t allow it
– but could indeed contain a vector of Nodes. (C++
vectors themselves involve pointers, so pointers are
still involved, they’re just not explicit.)
Without delving into a discussion that’s well beyond the
scope of this document, we’ll say only that implement-
ing a Node’s children as a vector of Nodes would
likely wreak havoc on efficiency, both in space (mem-
ory) and in time, when objects like Tree and Node
are being read from a file or otherwise created or mod-
ified. Considerable memory fragmentation could also
come about.
Another user wanted to write code that copied some
of children's pointers. The attempt to do so was
stymied due to std::unique_ptr's intentional
lack of a copy constructor, as unique_ptr is designed
to be the exclusive “owner” of the object to which it
points. GNDStk uses unique_ptr quite intentionally,
precisely to deal with the ownership issue cleanly and
clearly while also benefitting from unique_ptr's
automatic handling of an object’s memory footprint.
A code shouldn’t attempt to take any actions that
would break the ownership rules unique_ptr man-
ifests, and a C++ compiler will say so loudly if one
tries. Anyone who really wishes to make their own
pointer – say, a raw pointer – to an object to which
one of our unique_ptrs already refers, can always
dereference the unique_ptr (giving a reference to
a const or non-const Node, and effectively los-
ing the unique_ptr aspect), then take the address
to get a pointer again: basically &(*uptr), where
uptr is a unique_ptr in one of our children vec-
tors. (Do not, of course, delete the Node through
such a pointer; leave its management to the original
unique_ptr!) We recommend that anyone who does
this, or anything similar, be sufficiently familiar with the
C++ language, as well as justifiably confident that there
isn’t a better way to accomplish the goal at hand.

Tree

Tree derives from Node, so what we’ve already spo-
ken about, in terms of member data, still applies.
Some additional points are in order, however, owing to
Tree's status as the root node in our internal repre-
sentation of a GNDS hierarchy.

Direct-Access Examples

XML and JSON

1.3.4 Smart Query System

1.3.5 GNDS Creation
node ctors tree ctors add()s

1.3.6 Advanced Examples
Largely continue query system discussion. Not sure
about “advanced examples” characterization.

CHAPTER 2

BASIC CONSTRUCTS

2.1 Primary Classes

2.1.1 Tree

2.1.2 Node

2.1.3 XML

2.1.4 JSON

2.2 Node: Major Capabilities

2.2.1 Query

2.2.2 Add Data

2.3 Functions

2.3.1 foo

2.3.2 bar

2.3.3 etc

2.4 Reading & Writing

2.5 Miscellaneous Utilities

2.5.1 Global Flags

2.5.2 Diagnostics

Notes

Warnings

Errors

Context

2.5.3 Other

CHAPTER 3

CORE INTERFACE

3.1 Motivation

3.2 Query System, Part 1

3.2.1 Meta & Child

Meta Class

Child Class

3.2.2 Operators

3.2.3 Query Metadata

Node.meta(string)

1 const string &meta (const string &key)
→˓const;

2 string &meta (const string &key);

Node.meta(Meta)

1 const string &meta (const Meta<
→˓ void > &kwd) const;

2 string &meta (const Meta<
→˓ void > &kwd);

3 TYPE meta (const Meta<
→˓ TYPE, CONVERTER> &kwd) const;

4 optional <TYPE> meta (const Meta
→˓<optional <TYPE>, CONVERTER> &kwd)
→˓const;

5 Defaulted<TYPE> meta (const Meta
→˓<Defaulted<TYPE>, CONVERTER> &kwd)
→˓const;

6 TYPE meta (const Meta
→˓<variant <Ts...>,CONVERTER> &kwd)
→˓const;

Node(Meta)

1 decltype(auto) operator()(const Meta
→˓<TYPE,CONVERTER> &kwd) const;

2 decltype(auto) operator()(const Meta
→˓<TYPE,CONVERTER> &kwd);

3.2.4 Query Child Nodes

Node.one(string)

1 const Node &one(const string &key,
→˓const FILTER &filter) const;

2 Node &one(const string &key,
→˓const FILTER &filter);

3 const Node &one(const string &key
→˓) const;

4 Node &one(const string &key
→˓);

Node.many(string)

1 CONTAINER<Node> many(const string &key,
→˓const FILTER &filter) const;

2 CONTAINER<Node> many(const string &key
→˓) const;

Node.child(Child)

1 const Node &child(const Child<void,
→˓ one, void, FILTER> &
→˓kwd) const;

2 Node &child(const Child<void,
→˓ one, void, FILTER> &
→˓kwd);

3 CONTAINER<Node> child(const Child<void,
→˓ many, void, FILTER> &
→˓kwd) const;

4 TYPE child(const Child<TYPE,
→˓ one, CONVERTER, FILTER> &
→˓kwd) const;

5 optional<TYPE> child(const Child
→˓<optional <TYPE>, one, CONVERTER,
→˓FILTER> &kwd) const;

6 Defaulted<TYPE> child(const Child
→˓<Defaulted<TYPE>, one, CONVERTER,
→˓FILTER> &kwd) const;

7 TYPE child(const Child
→˓<variant <Ts...>, one, CONVERTER,
→˓FILTER> &kwd) const;

8 CONTAINER<TYPE> child(const Child<TYPE,
→˓ many, CONVERTER, FILTER> &
→˓kwd) const;

9 CONTAINER<TYPE> child(const Child
→˓<optional <TYPE>, many, CONVERTER,
→˓FILTER> &kwd) const;

10 CONTAINER<TYPE> child(const Child
→˓<Defaulted<TYPE>, many, CONVERTER,
→˓FILTER> &kwd) const;

11 CONTAINER<TYPE> child(const Child
→˓<variant <Ts...>, many, CONVERTER,
→˓FILTER> &kwd) const;

Node(Child)

1 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd
→˓) const;

2 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd
→˓);

3 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const string label) const;

4 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const string label);

5 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const regex labelRegex) const;

6 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const regex labelRegex);

3.3 Query System, Part 2

3.3.1 Sequence Queries

Node.operator(. . .)

1 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓ KEYWORDS &&...
→˓kwds) const;

2 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓ KEYWORDS &&...
→˓kwds);

3 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const string label, KEYWORDS &&...
→˓kwds) const;

4 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const string label, KEYWORDS &&...
→˓kwds);

5 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const char *const label, KEYWORDS &&...
→˓kwds) const;

6 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const char *const label, KEYWORDS &&...
→˓kwds);

7 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const regex labelRegex, KEYWORDS &&...
→˓kwds) const;

8 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const regex labelRegex, KEYWORDS &&...
→˓kwds);

9 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const pair<Child,label>, KEYWORDS &&...
→˓kwds) const;

10 decltype(auto) operator()(const Child
→˓<TYPE,ALLOW,CONVERTER,FILTER> &kwd,
→˓const pair<Child,label>, KEYWORDS &&...
→˓kwds);

3.3.2 Multi-Queries

Node.operator(|)

1 auto operator()(const KeywordTup<Ks...>
→˓&kwds) const;

2 auto operator()(const KeywordTup<Ks...>
→˓&kwds);

3.3.3 Conversion & Filters

3.4 Creating Data

3.4.1 Direct

3.4.2 Using “Query” Objects

Metadata

Need a legend for things like this. . . .

1 // string, value
2 metaPair &add(const string &key, const

→˓ T &val, const CONVERTER &
→˓converter = CONVERTER{});

3 metaPair &add(const string &key, const
→˓Defaulted<T> &def, const CONVERTER &
→˓converter = CONVERTER{});

4

5 // Meta<void>, value
6 metaPair &add(const Meta<void> &kwd,

→˓const T &val = T{}, const CONVERTER &
→˓converter = CONVERTER{});

7

8 // Meta<TYPE>, value
9 metaPair &add(const Meta<TYPE,CONVERTER>

→˓ &kwd, const T &val = T{});
10 metaPair &add(const Meta<TYPE,CONVERTER>

→˓ &kwd, const Defaulted<T> &def);
11

12 // Meta<optional>, value
13 metaPair &add(const Meta<optional<TYPE>,

→˓CONVERTER> &kwd, const T &
→˓val = T{});

14 bool add(const Meta<optional<TYPE>,
→˓CONVERTER> &kwd, const optional <T> &
→˓opt);

15 bool add(const Meta<optional<TYPE>,
→˓CONVERTER> &kwd, const Defaulted<T> &
→˓def);

16

17 // Meta<Defaulted>, value
18 metaPair &add(const Meta<Defaulted<TYPE>

→˓,CONVERTER> &kwd, const T &
→˓val = T{});

19 bool add(const Meta<Defaulted<TYPE>
→˓,CONVERTER> &kwd, const optional <T> &
→˓opt);

20 bool add(const Meta<Defaulted<TYPE>
→˓,CONVERTER> &kwd, const Defaulted<T> &
→˓def);

Children

1 // string
2 Node &add(const string &name = "");
3

4 // value
5 Node &add(const T &val);
6 Node &add(const Defaulted<T> &def);
7

8 // Child<void>, value
9 Node &add(const Child<void,ALLOW,void,

→˓FILTER> &kwd, const T &val = T{});
10

11 // Child<TYPE>, value
12 Node &add(const Child<TYPE,ALLOW,

→˓CONVERTER,FILTER> &kwd, const
→˓ T &val = T{});

13 Node &add(const Child<TYPE,ALLOW,
→˓CONVERTER,FILTER> &kwd, const Defaulted
→˓<T> &def);

14

15 // Child<optional>, value
16 Node &add(const Child<optional<TYPE>,

→˓ALLOW,CONVERTER,FILTER> &kwd, const
→˓ T &val = T{});

17 bool add(const Child<optional<TYPE>,
→˓ALLOW,CONVERTER,FILTER> &kwd, const
→˓optional <T> &opt);

18 bool add(const Child<optional<TYPE>,
→˓ALLOW,CONVERTER,FILTER> &kwd, const
→˓Defaulted<T> &def);

19

20 // Child<Defaulted>, value
21 Node &add(const Child<Defaulted<TYPE>,

→˓ALLOW,CONVERTER,FILTER> &kwd, const
→˓ T &val = T{});

22 bool add(const Child<Defaulted<TYPE>,
→˓ALLOW,CONVERTER,FILTER> &kwd, const
→˓optional <T> &opt);

23 bool add(const Child<Defaulted<TYPE>,
→˓ALLOW,CONVERTER,FILTER> &kwd, const
→˓Defaulted<T> &def);

24

25 // Child<*> w/allow::many, container
26 void add(const Child<TYPE,allow::many,

→˓CONVERTER,FILTER> &kwd, const CONTAINER
→˓<T,Args...> &container);

3.5 Conversion Scheme

3.6 Advanced Topics

CHAPTER 4

HIGH-LEVEL INTERFACE

4.1 Component Base

4.1.1 Motivation

4.1.2 Capabilities

4.1.3 Usage Requirements

4.2 Main Structures

4.2.1 Examples

4.3 Field Concepts

4.3.1 Required

4.3.2 Optional

4.3.3 Defaulted

4.4 C++ Version-Specific

4.4.1 GNDS v1.9

4.4.2 GNDS v2.0

4.5 Python Bindings

CHAPTER

5

SEARCH

CHAPTER 6

REFERENCE

6.1 Core Classes

6.1.1 Tree

6.1.2 Node

6.1.3 XML

6.1.4 JSON

6.1.5 Meta

6.1.6 Child

6.1.7 KeywordTup

6.2 I/O and Related

6.3 Node: Major Ca-
pabilities

6.3.1 meta()

6.3.2 one() and many()

6.3.3 child()

6.3.4 operator()

6.3.5 operator[]

6.3.6 MetaRef & ChildRef

6.4 Meta & Child Op-
erators

6.5 convert()

6.5.1 Tree/XML/JSON

6.5.2 For Metadata

6.5.3 For Child Nodes

6.6 Canned Key-
words

6.6.1 For Metadata

6.6.2 For Child Nodes

6.6.3 Special cases

6.7 High-Level Sup-
port

6.8 High-Level Inter-
face

6.8.1 GNDS Version 1.9

6.8.2 GNDS Version 2.0

6.9 Miscellaneous

CHAPTER

7

INDEX

2 Contents

https://github.com/nlohmann/json
https://pugixml.org/
https://www.nndc.bnl.gov/endf/b8.0/gndsfiles.html
https://www.nndc.bnl.gov/endf/b8.0/gndsfiles.html
https://pugixml.org/
https://github.com/nlohmann/json
https://www.oecd-nea.org/jcms/pl_39689/specifications-for-the-generalised-nuclear-database-structure-gnds
https://www.oecd-nea.org/jcms/pl_39689/specifications-for-the-generalised-nuclear-database-structure-gnds

	INTRODUCTION & PRIMER
	Introduction
	Description
	Background
	Acknowledgements

	Building GNDStk
	Download
	Build & Test
	Summary
	Your Own Application
	Alternative: Bash Script
	Header-Only Library

	Tutorial
	Basics + Core Interface
	Read and Write GNDS
	Data Structure “Direct”
	Smart Query System
	GNDS Creation
	Advanced Examples

	BASIC CONSTRUCTS
	Primary Classes
	Tree
	Node
	XML
	JSON

	Node: Major Capabilities
	Query
	Add Data

	Functions
	foo
	bar
	etc

	Reading & Writing
	Miscellaneous Utilities
	Global Flags
	Diagnostics
	Other

	CORE INTERFACE
	Motivation
	Query System, Part 1
	Meta & Child
	Operators
	Query Metadata
	Query Child Nodes

	Query System, Part 2
	Sequence Queries
	Multi-Queries
	Conversion & Filters

	Creating Data
	Direct
	Using “Query” Objects

	Conversion Scheme
	Advanced Topics

	HIGH-LEVEL INTERFACE
	Component Base
	Motivation
	Capabilities
	Usage Requirements

	Main Structures
	Examples

	Field Concepts
	Required
	Optional
	Defaulted

	C++ Version-Specific
	GNDS v1.9
	GNDS v2.0

	Python Bindings

	SEARCH
	REFERENCE
	Core Classes
	Tree
	Node
	XML
	JSON
	Meta
	Child
	KeywordTup

	I/O and Related
	Node: Major Capabilities
	meta()
	one() and many()
	child()
	operator()
	operator[]
	MetaRef & ChildRef

	Meta & Child Operators
	convert()
	Tree/XML/JSON
	For Metadata
	For Child Nodes

	Canned Keywords
	For Metadata
	For Child Nodes
	Special cases

	High-Level Support
	High-Level Interface
	GNDS Version 1.9
	GNDS Version 2.0

	Miscellaneous

	INDEX

